

Q.P Code	D 112648	Total Pages: 3		Name		
				Register No.		
FIRST SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2024						
		(CUF	YUGP)			
		MAT1MN105-N	MATRIX 7	THEORY		
		2024 A	dmissions			
Maximum	Time :2 Hou	ırs		Maximum Marks :70		
Maximum	1 ime :2 Hou	irs		Maximum Marks :70		

	Section A						
All	All Question can be answered. Each Question carries 3 marks (Ceiling : 24 Marks)						
1	Solve $2x - y = 0$						
	6x + 5y = 1						
2	Find all values of k for which the augmented matrix $\begin{bmatrix} k & 2 & 3 \\ -1 & 4 & 5 \end{bmatrix}$						
3	Let $A = \begin{bmatrix} 1 & 2 & 4 \\ 6 & 1 & 1 \\ 1 & 3 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 4 & 5 \\ 7 & 1 & 1 \\ 8 & 9 & 0 \end{bmatrix}$. Check whether $tr(AB) = tr(A).tr(B)$						
4	Let $A = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ Show that $(A^2)^T = (A^T)^2$						
5	Let A and B be two 2×2 symmetric matrices. Show that if $A + B$ is also symmetric						
6	Use the arrow technique to evaluate the determinant $\begin{bmatrix} 7 & 4 & 1 \\ 0 & 6 & 4 \\ 9 & 5 & 2 \end{bmatrix}$						
7	Determine whether the statement "If the sum of the second and fourth row vectors of a						
	6×6 matrix A is equal to the last row vector, then $det(A) = 0$ " is true or false, and justify						
8	your answer Let $\mathbf{u} = (1, 2, -3, 5, 0), \mathbf{v} = (0, 4, -1, 1, 2), \text{ and } \mathbf{w} = (7, 1, -4, -2, 3).$ Find the components						
	of $(3\mathbf{u} - \mathbf{v}) - (2\mathbf{u} + 4\mathbf{w})$						
9	Show that $\mathbf{u} = (-2, 3, 1, 4)$ and $\mathbf{v} = (1, 2, 0, -1)$ are orthogonal vectors in \mathbb{R}^4 .						
10	Let $\mathbf{u} = (1, 2, -2)$ and $\mathbf{v} = (3, 0, 1)$. Show that $\mathbf{u} \times \mathbf{v}$ is Perpendicular to \mathbf{u} and to \mathbf{v}						
10	Let $\mathbf{u} = (1, 2, -2)$ and $\mathbf{v} = (3, 0, 1)$. Show that $\mathbf{u} \times \mathbf{v}$ is Perpendicular to \mathbf{u} and to \mathbf{v}						

D 112648

	Section B							
All	All Question can be answered. Each Question carries 6 marks (Ceiling : 36 Marks))							
11	Change the matrix $ \begin{bmatrix} 2 & 5 & 9 & 3 & 10 \\ 6 & 7 & 2 & 6 & 1 \\ 9 & 1 & 0 & 2 & 1 \end{bmatrix} $ to reduced row echelon form							
12	Find all values of k , if any, that satisfy the equation							
	$\begin{bmatrix} k & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} k \\ 1 \\ 1 \end{bmatrix} = 0$							
13	Using Row Operations to find A^{-1} ,							
	$A = \begin{bmatrix} 1 & 3 & 1 \\ 4 & 5 & 2 \\ 7 & 3 & 2 \end{bmatrix}$							
14	Determine whether the homogeneous system has nontrivial solutions							
	$x_1 + 6x_2 + 4x_3 = 0$ $2x_1 + 4x_2 - x_3 = 0$ $-x_1 + 2x_2 + 5x_3 = 0$							
15	Using Column Operations to evaluate the determinant of							
16	Using Cramer's rule solve:							
	$\begin{aligned} x + y + z &= 9\\ 2x + 5y + 7z &= 52 \end{aligned}$							
	2x + 5y + 7z = 52							
	2x + y - z = 0							
17	Let $\mathbf{u} = (2, -1, 3)$ and $\mathbf{v} = (4, -1, 2)$. Find the vector component of \mathbf{u} along \mathbf{v} and the							
	vector component of \mathbf{u} orthogonal to \mathbf{v} .							
18	Find vector and parametric equations of the plane $x - y + 2z = 5$.							

D 112648

	Section C								
	Answer any ONE. Eac	ch Question carries 10 marks (1x10=10 Marks))							
19	Test for consistency and solv	blve x + 2y - 5z = -9 $3x - y + 2z = 5$ $2x + 3y - z = 3$ $4x - 5y + z = -3$							
20	Decide whether the matrix find its inverse.	$\begin{bmatrix} 1 & 3 & 1 & 1 \\ 2 & 5 & 2 & 2 \\ 1 & 3 & 8 & 9 \\ 1 & 3 & 2 & 2 \end{bmatrix}$ is invertible, and if so, use the adjoint method	l to						