_	ode: D 123075 Total Pages: 2 Name:						
	Register No.						
	SECOND SEMESTER (CUFYUGP) DEGREE EXAMINATION, APRIL 2025						
	BCA BCA2CJ103 / BCA2MN102 - Numerical Analysis and Optimization Techniques						
	2024 Admission onwards						
Maxi	mum Time : 2 Hours Maximum Marks :70						
	Section A						
	All Questions can be answered. Each Question carries 3 marks (Ceiling : 24 Marks)						
1	State Simpson's (1/3) rd rule.						
2	State the formula for bisection method						
3	Write Newton Raphson formula.						
4	Write the equation of Lagrange's interpolating polynomial through (x_0, y_0) and (x_1, y_1)						
5	Using Trapezoidal rule find $\int_0^2 x^2 dx$						
6	Write Simpson's Three- Eighths Rule formula.						
7	What are the functions of O.R?						
, 8	What are unbalanced transportation problems?						
9	What are slack and surplus variables?						
<u> </u>	Write short notes on LCM.						
	Section B						
	All Questions can be answered. Each Question carries 6 marks (Ceiling : 36 Marks)						
11	Given $f(2) = 5$, $f(2.5) = 6$. Evaluate $f(2.2)$ using Lagrange's method						
12	Use Newton-Raphson method to find a root of the equation $x^3 - 2x - 5 = 0$						
13	Using Newton's forward interpolation formula find the cubic polynomial for the data						
	X: 0 1 2 3						
	Y: 1 2 1 10						
14	Find the approximate value of $\int_0^1 \frac{1}{1+x} dx$ using Trapezoidal rule						
15	AB Ltd manufactures two products A and B. To manufacture one unit of A, two units of material X and 4 units of material Y are required. To manufacture one unit of B, three units of X and two units of Y is required. As the raw material X is in short supply, not more than 16 units of X can be used. At least 16 units of material Y must be used in order to meet						

D 123075

	committed sales of A and B. Cost per unit of material X and Y are Rs. 2.5 and Rs. 25							
	respectively. You are required to formulate mathematical model							
16	Solve the linear programming problem graphically							
	$\begin{array}{c} Max \ z = 4x_1 + 3x_2\\ \text{Subject to the constraints}\\ 2x_1 + x_2 \leq 1000\\ x_1 + x_2 \leq 800\\ x_1 \leq 400, x_2 \leq 700\\ x_1 \geq 0, x_2 \geq 0\\ \end{array}$							
17								
18	Find the initial solution of the following Transportation problem using Vogel's							
	Approximation method							
		<u>D₁</u>	<u>D₂</u>	D_3	D_4	Supply		
	0_1	190	300	500	100	70		
	0_2	700	300	400	600	90		
		400	100	600	200	_ 180		
	Demand	50	80	70	140			
		-			ection C			
Answer any ONE .Each Question carries 10 marks (1x10=10 Marks)								
10	Use the sim	nplex met	thod to so	lve LPP				
19	Use the simplex method to solve LPP $Max \ z = 3x_1 + 2x_2$							
	Subject to the constraints : $x_1 + x_2 \le 4$							
	$x_1 - x_2 \le 2$ $x_1, x_2 \ge 0$							
20	Solve the following assignment problem for minimizing cost							
		Ι	II	III	IV			
	A	32	26	35	38			
	В	27	24	26	32			
	С	28	22	25	34			
	D	10	10	16	16			