Q.P Code D 122905	Total Pages 3	Name	603265
		Register No.	

SECOND SEMESTER (CUFYUGP) DEGREE EXAMINATION, APRIL 2025

MATHEMATICS

MAT2MN105 Vector Spaces and Linear Transformations

2024 Admission Onwards

Maximum Time :2 Hours

Maximum Marks :70

All	All Question can be answered. Each Question carries 3 marks (Ceiling : 24 Marks)		
1	Let V be a vector space, u a vector in V, and k a scalar ; then: prove that $\mathbf{0u} = 0$		
2	If V is any vector space, and if $W = \{0\}$ is the subset of V that consists of the zero vector only, then show that W is a subspace of V		
3	Explain linearly independent and linearly dependent set of vectors. Give Examples		
4	Show that the polynomials $1+t,2$ form a basis for $\mathbf{P_1}$.		
5	Define dimension of a vector space. Find the dimension of all $n \times n$ diagonal matrices.		
6	Find the image of $\mathbf{x} = (1, 1)$ under a rotation of $\pi/6$ radians about the origin.		
7	Find the kernel of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(x_1, x_2) = (2x_1 + x_2, 4x_1 + 2x_2)$		
8	Define Eigen value and vector of a matrix. Write the eigen values of $n \times n$ diagonal matrix		
9	Find the eigen values of the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$		
10	Write a non diagonalizable 2×2 matrix with eigen value 2 only.		

D 122905

Section B

	603265	
All (Question can be answered. Each Question carries 6 marks (Ceiling : 36 Marks))	
11	Show that the set M_{mn} of all $m \times n$ matrices with the usual operations of addition and	
	scalar multiplication is a vector space over R .	
12	Solve the system and then give a geometric description of the solution set.	
	$\begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 3 & -6 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	
13	Determine whether the vectors $(-3, 0, 4), (5, -1, 2), (1, 1, 3)$ are linearly independent or are linearly dependent in \mathbb{R}^3 .	
14	Show that the following vectors do not form a basis for \mathbf{P}_2 .	
	$1 - 3x + 2x^2, \ 1 + x + 4x^2, \ 1 - 7x$	
15	Use matrix multiplication to find the image of the vector $(2, -1, 2)$ if it is rotated	
	(a) 30° clockwise about the positive $x-$ axis.	
	(b) 45° counterclockwise about the positive $y-$ axis.	
16	Sketch the image of the unit square under multiplication by the invertible matrix	
	$A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$. Label the vertices of the image with their coordinates, and number the edges of the unit square and their corresponding images.	
17	Find the eigenvalues of 0 1 0 0 0 1 4 -17 8	
18	Show that the following matrix is not diagonalizable: $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$	
0326	55 $\begin{bmatrix} -3 & 5 & 2 \end{bmatrix}$	

D 122905

Section C

603265

	Beetion e
	Answer any ONE. Each Question carries 10 marks (1x10=10 Marks))
19	Consider the vectors $\mathbf{u} = (1, 2, -1)$ and $\mathbf{v} = (6, 4, 2)$ in \mathbb{R}^3 . Show that $\mathbf{w} = (9, 2, 7)$ is a linear combination of \mathbf{u} and \mathbf{v} and that $\mathbf{w} = (4, -1, 8)$ is not a linear combination of \mathbf{u} and \mathbf{v} .
20	Find a matrix P that diagonalizes $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$