D 120570

(**Pages : 3**)

Name.....

Reg. No.....

FOURTH SEMESTER (CBCSS-UG) DEGREE EXAMINATION, APRIL 2025

Information Technology

BIT4C07—NUMERICAL METHODS AND OPERATION RESEARCH

(2019–2023 Admissions)

Time : Two Hours

Maximum : 60 Marks

Section A – Short Answer Type Questions

Each correct answer carries a maximum of 2 marks. Ceiling 20 marks.

- 1. Explain errors.
- 2. Find an approximation to $\sqrt{5}$ to ten decimal places.
- 3. State Lagrange's interpolation formula.
- 4. Use Taylor's series method $y^1 = x y^2$, y(0) find y(0.1) correct to four decimal places.
- 5. Explain Trapezoidal Rule.
- 6. What are the properties of divided difference method ?
- 7. Write down the dual of the following LPP :

Max : $Z = 4x_1 + 2x_3$

Subject to $-x_1 - x_2 \le -3, -x_1 + x_2 \ge -2, x_1, x_2 \ge 0.$

- 8. What is degeneracy in Transportation problems?
- 9. Explain the methods of solving differential equations.
- 10. Differentiate between slack and surplus variables.
- 11. Define feasible solution.
- 12. Solve the following LPP graphically :

Max $Z = 60x_1 + 40x_2$

St $2x_1 + x_2 \le 60, x_1 \le 25, x_2 \le 35, x_1, x_2 \ge 0$.

(Ceiling 20 marks)

Turn over

627908

627908

D 120570

Section B

Ceiling 30 marks. Each question carries 5 marks.

13. Find Solution of x = 1925 using Newton's Backward Difference formula :

Х	: 1891	1901	1911	1921	1931
f(x)	: 46	66	81	93	101

- 14. Find Lagrange's interpolation polynomial fitting the points f(1) = -3, f(3) = 0, f(4) = 30, f(6) = 132. Hence find f(5).
- 15. Solve the following assignment problem :

	А	В	С	D
1	7	5	8	4
2	5	6	7	4
3	8	7	9	8

16. Solve the following Transportation problem by Vogel's method :

	W_1	W_2	W_3	Supply
F ₁	2	7	4	5
\mathbf{F}_2	3	3	1	8
\mathbf{F}_3	5	4	7	7
\mathbf{F}_4	1	3	2	14
Demand	7	9	18	

- 17. Explain Taylor series method.
- 18. Explain MODI method.
- 19. An animal feed company must produce at least 200 kgs of a mixture consisting of Ingredients X1 and X2 daily. X1 costs Rs. 3 per kg and X2 cost Rs. 8 per kg. No more than 80 kg of X1 can be used and atleast 60 kgs of X2 must be used. Formulate a mathematical model to the problem.

(Ceiling 30 marks)

627908

627908

D 120570

3

Section C

Answer any **one** question. 10 Marks.

20. Solve the following problem by simplex method :

Maximise $Z = 6x_1 + 4x_2$

Subject to $-2x_1 + x_2 \le 2$ $x_1 - x_2 \le 2$ $3x_1 + 2x_2 \le 9$ $x_1, x_2 \ge 0$

21. Find the solution to the following system of equations using the Gauss-Seidel method :

 $12x_1 + 3x_2 - 5x_3 = 1$ $x_1 + 5x_2 + 3x_3 = 28$ $3x_1 + 7x_2 + 13x_3 = 76$

use $(x_1, x_2, x_3) = (1, 0, 1)$ as the initial guess and conduct two iterations.

 $(1 \times 10 = 10 \text{ marks})$