Q.P Code D134144	Total Pages	3		Name	672292	
				Register N	Vo.	
THIRD SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2025						
THIRD SERVES TEXT OF SERVED EARTH WITH WITH WITH WITH WITH WITH WITH WI						
(CUFYUGP)						
$\mathbf{MAT3MN205}$						
Optimization Techniques						
2024 Admission Onwards						
Maximum Time :2	Hours			Maximun	n Marks :70	

	Section A					
All	Question can be answered. Each Question carries 3 marks (Ceiling: 24 Marks)					
1	Write the General Linear Programming Problem					
2	Which are the characteristics of Graphical method?					
3	Define Surplus variable in Linear Programming. Give an Example					
4	Write the following linear programming problem in Simplex format Maximize Z=3a+2b+4c Subject to $3a+4b-5c\leq 3, a-2b-c\leq 1, 2a+b\geq 2, a,b,c\geq 0$					
5	Explain the situation when Big-M method used in Linaer Programming Problems.					
6	How can we solve Degeneracy in Linear Programming Problems					
7	Why is the transportation model considered a special type of linear programming problem?					
8	Write different methods to get Basic feasible solution and also for optimality test in transportation model.					
9	Explain loaded cells and empty cells in transportation matrix					
10	Write the difference in allocation between North – west corner method and least cost cell method					

	Section B 672292					
All	Question can be answered. Each Question carries 6 marks (Ceiling: 36 Marks)					
11	Draw the feasible area of the following constraints.					
	$x + 2y \le 3$, $2x - y \le 0$, $3x + 4y \le 12$ $x, y \ge 0$					
12	Using graphical method,					
	Maximize $2x + y$					
	subject to					
	$x - 2y \ge 2, 2x + 4y \le 8 x, y \ge 0$					
13	Solve by Simplex Method					
	Maximize Z=3a+2b Subject to					
	Waximize 2—64 25 Subject to					
	a = 2b < 6 $a + 5b < 10$ $a + b > 0$					
	$a - 3b \le 6, a + 5b \le 10, a, b \ge 0$					
14	Solve the LPP by Big-M Method					
	Maximize $x + 5y$ subject to.					
	$x + y \le 3, y \ge 8, x, y \ge 0$					
15	A company manufactures two product A and B. These are machined on machines X and					
	Y. A takes one hour on machine X and one hour on Machine Y. Similarly product B takes					
	4 hours on Machine X and 2 hours on Machine Y. Machine X and Y have 8 hours and 4					
	hours as idle capacity. The planning manager wants to avail the idle time to manufacture					
	A and B. The profit contribution of A is Rs. 3/– per unit and that of B is Rs.9/– per unit.					
	Find the optimal product mix.					
16	Solve the following transportation model					
	D_1 D_2 D_3 Supply					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	Domaid 10 20 10 00					

17	Three factories F_1, F_2, F_3 supply four warehouses W_1, \ldots, W_4	. Supply, demand and unit
	transportation costs (in Rs.) are:	672292

Factory	W_1	W_2	W_3	W_4	Supply
$\overline{F_1}$	4	6	8	5	8
F_2	7	3	4	2	9
F_3	5	9	1	6	7
Demand	5	8	6	5	

Find the Optimal Solution for least cost transportation cost.

18 Solve the following by Vogel's Approximation Method

	W_1	W_2	W_3	Supply
F_1	4	1	3	8
F_2	2	5	9	7
F_3	3	6	1	5
Demand	6	7	7	

Section C

Answer any ONE. Each Question carries 10 marks (1x10=10 Marks)

19 Using graphical method,

Minimize 3x - 5y

subject to

$$x + 2y \ge 6$$
, $5x + 3y \le 15$, $x \le 3x, y \ge 0$

There are 5 machines M_1, \ldots, M_5 and 5 jobs J_1, \ldots, J_5 . The *returns* (benefit) matrix B (rows = machines, columns = jobs) is:

$$B = \begin{array}{|c|c|c|c|c|c|c|c|}\hline & J_1 & J_2 & J_3 & J_4 & J_5 \\\hline & M_1 & 9 & 7 & 6 & 8 & 5 \\\hline & M_2 & 6 & 10 & 8 & 7 & 9 \\\hline & M_3 & 7 & 6 & 11 & 5 & 8 \\\hline & M_4 & 8 & 9 & 5 & 10 & 6 \\\hline & M_5 & 5 & 8 & 7 & 6 & 11 \\\hline \end{array}$$

Assign the jobs to machines so as to maximize the total return.