\mathbf{C}	81	7	6	0
--------------	----	---	---	---

(Pages: 3)

N	ame	
	·	

Reg. No.....

SECOND SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION, APRIL 2020

B.C.A.

BCA 2C 04—NUMERICAL METHODS IN C

(2014 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A (Objective Type Questions)

Answer all questions.

Each question carries 1 mark.

- 1. The number $\pi = 3.14159265...$ is approximated by $\frac{22}{7}$. Find upto how many digits is this approximation accurate.
- 2. If X = 2.536, find the relative error when X is truncated to two decimal digits.
- 3. Represent 44.85×10^6 in normalized floating-point mode.
- 4. State Newton-Raphson's formula.
- 5. Define the rate of convergence of an iterative method.
- 6. What do you mean by backward differences?
- 7. Explain Gauss Elimination method briefly.
- 8. Write the formula obtained from Newton's forward interpolation for computing the value of $\frac{dy}{dx}$.
- 9. What do you mean by numerical integration?
- 10. In solving $\frac{dy}{dx} = f(x,y), y(x_0) = y_0$, write down Taylor's series for $y(x_1)$.

 $(10 \times 1 = 10 \text{ marks})$

Part B (Short Answer Type)

Answer all questions.

Each question carries 2 marks.

- 11. Round-off the number 75462 to four significant digits and then calculate its absolute error, relative error and percentage error.
- 12. Find an interval of unit length which contains the smallest positive root of the equation $x^3 5x 1 = 0$.

Turn over

- 13. Using Crammer's rule, solve the system 3x + y + z = 3, 2x + 2y + 5z = -1 and x 3y 4z = 2.
- 14. Prove that $\delta = E^{1/2} E^{-1/2}$.
- 15. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Trapezoidal rule taking $h = \frac{1}{6}$.

 $(5 \times 2 = 10 \text{ marks})$

Part C (Short Essay Type)

Answer any **five** questions. Each question carries 4 marks.

- 16. Approximate values of $\frac{1}{7}$ and $\frac{1}{11}$, correct to 4 decimal places are 0.1429 and 0.0909 respectively. Find the possible relative error and absolute error in the sum of 0.1429 and 0.0909.
- 17. Find a real root of the equation $x^3 2x 5 = 0$ by the method of false position correct to three decimal places.
- 18. Solve the system of equations 3x + y z = 3, 2x 8y + z = -5, x 2y + 9z = 8 using Gauss elimination method.
- 19. Find the Lagrange's interpolation polynomial fitting the points

$$f(1) = -3, f(3) = 0, f(4) = 30, f(6) = 132$$
. Hence find $f(5)$.

20. Find the missing term in the following table:

- 21. Prove the following:
 - a) $\Delta = 1 e^{-hD}$.

b)
$$\mu^2 = 1 + \frac{\delta^2}{4}$$
.

22. From the following table of values of x and y, obtain $\frac{dy}{dx}$ for x = 2.2.

23. Find by Taylor's series method the value of y at x = 0.1 correct to five places of decimals from $\frac{dy}{dx} = x^2y - 1, y(0) = 1.$

 $(5 \times 4 = 20 \text{ marks})$

Part D (Essay Questions)

Answer any **five** questions. Each question carries 8 marks.

- 24. (a) How many digits are to be taken in computing $\sqrt{20}$, so that the error does not exceed 0.1%.
 - (b) Find the product 349.1×863.4 and state how many figures of the result are trust worthy, assuming that each number is correct to four decimals.
- 25. (a) Find a real root of the equation $x^3 x 1 = 0$, that lies between 1 and 2, using bisection method.
 - (b) Derive a Newton-Raphson iteration formula for finding the cube root of a positive number N and hence find $\sqrt[3]{24}$
- 26. Solve the system of equations x+2y-z=3; 3x-y+2z=1; 2x-2y+3z=2 by Gauss-Jordan method.
- 27. Derive Simpson's (3/8)-rule $\int_{x_0}^{x_3} y dx = \frac{3}{8} h (y_0 + 3y_1 + 3y_2 + y_3).$
- 28. For the data:

$$x$$
: 0 0.2 0.4 0.6 0.8 1.0 $f(x)$: 7.0 6.008 5.064 4.216 3.512 3.0

Find an approximation to f(0.1) and f(0.3).

29. Given
$$f(0) = -18$$
, $f(1) = 0$, $f(3) = 0$, $f(5) = -248$, $f(6) = 0$, $f(9) = 13104$, find $f(x)$.

- 30. Evaluate $\int_0^1 \frac{dx}{1+x}$, using Romberg's method.
- 31. Use Runge-Kutta method to find y when x = 1.2 in steps of 0.1 given that $\frac{dy}{dx} = x^2 + y^2$ and y(1) = 1.5.

 $(5 \times 8 = 40 \text{ marks})$

