(Pages: 4)

Name	I	Name	ð		*******	
------	---	------	---	--	---------	--

Reg. No....

SECOND SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION MAY 2019

B.C.A.

BCA 2C 04-NUMERICAL METHODS IN C.

(2014 Admissions)

Time: Three Hours Maximum: 80 Marks

Part A (Objective Type)

Answer all ten questions. Each question carries 1 mark. 0.00056 has ——— significant digits. 2. Relative error E_r = ----3. Absolute error because of rounding off is -4. After n bisections, the length of the subinterval which contains x_n is 5. Newton-Raphson method is convergent: (a) Linearly. (b) Quadratically. (d) Biquadratically. Cubically. 6. What is the other name of Regula Falsi method? 7. When Gauss elimination method is used to solve AX = B, A is transferred in a — matrix. 8. State true or false: In Gauss-Jordan method, finding the values of $x_1, x_2, ..., x_n$ by using the process of back substitution. 9. Define the backward difference operator. 10. The error in Simpson's one-third rule is of the order $(10 \times 1 = 10 \text{ marks})$

(10 × 1 = 10 marks)

Turn over

Part B (Short Answer Type)

Answer all five questions. Each question carries 2 marks.

- 11. Find the relative error of the number 8.6 if both of its digits are correct.
- 12. Show that Newton-Raphson formula to find \sqrt{a} can be expressed in the form $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$, $n = 0, 1, 2, 3, \dots$
- 13. Solve by Gauss-Jordan method: 2x + y = 3, 7x 3y = 4.
- 14. Find $\Delta \left(\tan^{-1} x \right)$.
- 15. Using Euler's method, solve y' = x + y, y(0) = 1 for h = 0.5.

 $(5 \times 2 = 10 \text{ marks})$

Part C (Short Essay Type)

Answer any **five** questions. Each question carries 4 marks.

- 16. Define error and write the main three error sources.
- 17. Find a positive root of $xe^x = 2$ by the method of false position correct to 2 decimal places.
- 18. Solve by Gauss Elimination method 2x + 3y z = 5, 4x + 4y 3z = 3, 2x 3y + 2z = 2.
- 19. Using Lagrange's formula of interpolation find y (9. 5), given:

- 20. Find $\Delta^3 f(x)$ if f(x) = (3x+1)(3x+4)(3x+7)....(3x+19).
- 21. Prove that $\Delta = \frac{1}{2} \delta^2 + \delta \sqrt{1 + \frac{\delta^2}{4}}$.

22. The table given the results of an observation: 0 is the observed temperature in degrees centigrade of a vessel of cooling water; t is the time in minutes from the beginning of observation.

Find the approximate rate of cooling at t = 3.

23. Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Trapezoidal rule with h = 0.2.

 $(5 \times 4 = 20 \text{ marks})$

Part D (Essay Type)

Answer any **five** questions. Each question carries 8 marks.

- 24. (a) Write down the rules to round-off numbers.
 - (b) Sum of the following numbers 0.1532, 15.45, 0.000354, 305.1, 8.12, 143.3, 0.0212, 0.643 and 0.1743 when in each of which all the given digits are correct.
- 25. (a) Solve the equation $x \tan x = -1$ by Regula Falsi method starting with a = 0.25 and b = 3 correct to 3 decimal places.
 - (b) Find the root of $4x e^x = 0$ that lies between 2 and 3 using Newton's method.
- 26. Solve the system by Gauss-Jordan method:

$$x + y + z + w = 2$$
, $2x - y + 2z - w = -5$,

$$3x + 2y + 3z + 4w = 7$$
, $x - 2y - 3z + 2w = 5$.

- 27. (a) Find the forward difference of $\frac{1}{x(x+4)(x+8)}$
 - (b) Find $\Delta^n (\cos (ax + b))$.

Turn over

28. The following data are taken from the steam table:

Temp.°C	:	140	150	160	170	180
Pressure kgf/cm ² .	:	3.685	4.854	6.302	8.076	10.225

Find the pressure at temperature $t = 175^{\circ}$.

29. From the data given below, find the number of students whose weight is between 60 and 70:

Weight in Ibs	. :	0 - 40	40 - 60	60 - 80	80 - 100	100 - 120
Number of students	:	250	120	100	70	50

- 30. Using Romberg's method, evaluate $\int_{0}^{1} \frac{dx}{1+x}$ correct to three decimal places. Hence evaluate $\log_{e} 2$.
- 31. Solve the equation $\frac{dy}{dx} = 1 y$ given y(0) = 0 using Modified Euler's method and tabulate the solutions at x = 0.1, 0.2, and 0.3.

 $(5 \times 8 = 40 \text{ marks})$