~	22	1	7
U	44	1	-

(Pages: 4)

Name.....

Reg. No.....

FOURTH SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION APRIL 2021

Mathematics

MAT 4C 04—MATHEMATICS

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all the **twelve** questions. Each question carries 1 mark.

- 1. What do you mean by a non-linear differential equation?
- 2. What are the steps for finding general solution of a non-homogeneous equation y'' + ay' + by = r(x).
- 3. Find Wronskian of $y_1(x) = e^{-2x}$ and $y_2(x) = e^{-3x}$.
- 4. What is L[1]?
- 5. Define periodic function.
- 6. What is unit step function?
- 7. State Convolution theorem.
- 8. Define and give an example of an even function.
- 9. Give one dimensional wave equation.
- 10. Write the formula for Runge Kutta method.
- 11. Give formula for Euler method.
- 12. Give a formula for an error for Simpson's rule.

 $(12 \times 1 = 12 \text{ marks})$

Part B

Answer any nine questions. Each question carries 2 marks.

- 13. Find the particular integral for $y'' 4y' + 3y = 10e^{-2x}$.
- 14. Solve $(D^2 2D + 3) y = x^3 + \sin x$.
- 15. Find W $\left[e^{\lambda_1 x}, e^{\lambda_2 x}\right]$.
- 16. If $L^{-1}(f(s)) = F(t)$ then show that $L^{-1}(f(s-a)) = e^{at} F(t)$.
- 17. Show that the Laplace transform is a linear operation.
- 18. Find $L[t^2 \cos t]$.
- 19. Using convolution property, find $L^{-1}\left[\frac{1}{s^2(s-a)}\right]$.
- 20. Find the Fourier series of $f(x) = x^2$, when -1 < x < 1 with period 2.
- 21. Show that $u = \cos 4t \sin 2x$ is a solution of the wave equation.
- 22. Apply Picard's iteration upto 3 steps to solve $y' = 1 + y^2$ and y(0) = 1.
- 23. Compute $\int_{0}^{1} x^{2} dx$ by the rectangular rule with h = 0.5.
- 24. Solve $\int_{1}^{2} \frac{1}{x} dx$ by Trapezoidal rule with n = 4 and compare the estimate with the exact value of the integral.

Part C

Answer any six questions.

Each question carries 5 marks.

25. Solve
$$x^2 y'' + 7xy' + 13y = 0$$
.

- 26. Solve the non-homogeneous equation $y'' 4y' + 3y = 10e^{-2x}$.
- 27. Obtain the Fourier cosine series representation of $f(x) = e^x$, $x \in [0, \pi]$.
- 28. Find the inverse transform of $\frac{s^3 4s^2 + 4}{s^2(s^2 3s + 2)}$.
- 29. Solve $u_x + u_y = 2(x + y)u$.
- 30. Express the function $f(x) = x^2$, when -1 < x < 1 as a Fourier series with period 2.
- 31. Solve the integral equation $y = 1 \int_{0}^{t} (t \tau) y(\tau) d\tau$.
- 32. Find an approximate value of $\log_e 5$ by calculating $\int_0^5 \frac{dx}{4x+5}$ by Simpson's rule of integration.
- 33. Solve by Picard's method y' xy = 1, given y = 0 when x = 2. Also find y(2.05) correct to four places of decimal.

 $(6 \times 5 = 30 \text{ marks})$

Part D

Answer any two questions.

Each question carries 10 marks.

- 34. (a) Solve $x^2y'' 4xy' + 6y = 21x^{-4}$.
 - (b) Solve $(D^2 2D + 1) y = 3x^{3/2}e^x$.

which files are series "our to be a conserved with period

Tellingar non-sire grassonia va telli i santanata nya mpaka basini waka kanzinonina and

35. Find the solution of the wave equation:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

corresponding to the triangular initial deflection

$$f(x) = \begin{cases} \frac{2k}{l}x, & \text{when } 0 < x < \frac{l}{2} \\ \frac{2k}{l}(l-x), & \text{when } \frac{l}{2} < x < l \end{cases}$$

and the initial velocity zero.

36. Find the Fourier series of $f(x) = \begin{cases} 2, & -2 \le x < 0 \\ x, & 0 \le x < 2 \text{ in } (-2, 2). \end{cases}$

 $(2 \times 10 = 20 \text{ marks})$