	2		

(Pages: 2)

Nam	e
Terrer	C

Reg. No.....

SECOND SEMESTER M.B.A. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

BUS 2C 15-MANAGEMENT SCIENCE

(2013 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- What do you mean by crashing?
- 2. What do you mean by Feasible solution?
- 3. Define Alternative optima.
- 4. Define Intuitive approach.
- 5. Define Decision variable.
- 6. Briefly explain sensitivity analysis.

 $(6 \times 1 = 6 \text{ weightage})$

Part B

Answer any six questions.

Each question carries 3 weightage.

- 7. Draw a flowchart for the computational procedure for a LPP using simplex method.
- 8. Briefly describe the steps for solving a Transportation Problem.
- 9. Write short note on two person zero sums game.
- 10. Explain the basic characteristics of a queuing system.
- 11. Distinguish between the advantages and disadvantages of simulation?
- Write down the steps of the graphical method to obtain an optimal solution to a linear programming problem.
- 13. Distinguish between operations research and operations management.
- Develop a model for dependent and independent variables for factors influencing managerial decision with a hypothetical example.

 $(6 \times 3 = 18 \text{ weightage})$

Turn over

Part C

Answer any two questions. Each question carries 6 weightage

- 15. Explain with example, how decision trees are helpful in decision-making? What are the limitations of decision tree approach?
- 16. A transistor radio company manufactures models A, B and C which have profit contributions of 8, 15 and 25 respectively. The weekly minimum production requirements are 100 for model A, 150 for model B and 75 for model C. Each type of radio requires a certain amount of time for the manufacturing of component parts, for assembling and packing. Specially a dozen units of model A require three hours of manufacturing, four hours of assembling and one hour of packing. The corresponding figures for a dozen units of model B are 3.5, 5 and 1.5 and for a dozen unit of model C are 5, 8 and 3. During the forthcoming week the company has available 150 hours of manufacturing, 200 hours of assembling and 60 hours of packing time. Formulate the production scheduling problem as a linear programming model.
- 17. Assuming that the expected time are normally distributed, find the critical path and project duration of:

Activity	Days					
	Optimistic time		Most likely time	Pessimistic time		
1 - 2	311	2	5	14		
. 1 - 3	144	9	12	15		
2 - 4	22	5	14	17		
3 - 4	-	2	5	. 8		
3 - 5	100	8	17	20		
4 - 5	177	9	9	12		

 $(2 \times 6 = 12 \text{ weightage})$