D 93823

(Pages : 3)

Name..... Reg. No.....

FIRST SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION NOVEMBER 2020

Mathematics

MAT 1C 01-MATHEMATICS

Time : Three Hours

Maximum : 80 Marks

Supply

Part A (Objective Type Questions)

Answer all questions (1 - 12). Each question carries 1 mark.

- 1. $\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right) = \dots$
- 2. $\lim_{x \to 0} \frac{\sin(2+x) \sin 2}{x} = \dots$
- 3. Define removable discontinuity.
- 4. State the condition(s) for local maximum of the function y = f(x).
- 5. What is (are) the vertical asymptote(s) of the curve $xy^3 2xy^2 2y^3 4 = 0$.
- 6. State Rolle's theorem.
- 7 Find $\frac{d}{dx}(\cosh(3x-2))$.
- 8. State the second derivative test for concavity of a function y = f(x).
- 9. State the mean value theorem for definite integral.

10.
$$\sum_{k=1}^{4} (k^2 - 3k) = \dots$$

- 11. Let f be a continuous function on [a,b]. Then what is the average value of f on [a,b].
- 12. Area bounded by the curves y = f(x), y = g(x) and the ordinates x = a and x = b is given by

 $(12 \times 1 = 12 \text{ marks})$

Part B (Short Answer Type)

Answer any **nine** questions (13 - 24). Each question carries 2 marks.

13. If
$$\sqrt{3-2x} \le f(x) \le \sqrt{3-x}$$
, find $\lim_{x \to 0} f(x)$.

14. Find $\lim_{x \to 2} \frac{x-3}{x^2-4}$.

15. Find the equation of the tangent line to the curve $y = \sqrt{x}$ at x = 4.

16. Find the absolute extrema of $f(x) = x^{2/3}$ on [-2, 3].

17. Find the points of inflection of the function $y = 2 + \cos x, x \ge 0$.

18. Find
$$\lim_{x\to\infty} \frac{5x^2+8x-3}{3x^2+2}$$
.

19. Find the horizontal asymptotes of the graph of the function $f(x) = \frac{-8}{x^2 - 4}$.

20. Find the linearization of $f(x) = x^3 - 2x + 3$ at x = 2.

21. Find $\frac{dy}{dx}$ if $y = \int_1^{x^2} \cos t \, dt$.

22. Find $\lim_{x \to 1} \frac{1-x}{\log x}$.

- 23. Find $\lim_{x \to \infty} x^{1/x}$.
- 24. Verify Rolle's theorem for the function $f(x) = \tan x$ in $[0,\pi]$.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essay Type)

Answer any six questions (25 - 33). Each question carries 5 marks.

25. State and prove the rule for the limit of a sum.

26. Show that if a function f has a derivative at x = c, then show that f is continuous at x = c.

27. State and prove Rolle's theorem.

28. Verify mean value theorem for the function $f(x) = x^3 - 3x^2 + 2x$ in $\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$.

- 29. Find the intervals on which $f(x) = -x^3 + 12x + 5$, $x \in [-3,3]$ is increasing and decreasing.
- 30. Find all the asymptotes of $f(x) = \frac{x^2 3}{2x 4}$.

1

(**T**

- 31. Give an example of a function which is not Riemann integrable. Prove your claim.
- 32. Find the area between $y = \sec^2 x$ and $y = \sin x$ from 0 to $\pi/4$.

33. Verify the mean value theorem for integrals for the function $f(x) = \frac{x}{\sqrt{x^2 + 16}}$ in [0, 3]. (6 × 5 = 30 marks)

Part D (Essay Questions)

Answer any **two** questions (34 - 36). Each question carries 10 marks.

- 34. A dynamite blast blows a heavy rock straight up with a velocity of 160 ft/sec. It reaches a height of $s = 160t 16t^2$ ft after t seconds.
 - a) How high does the rock go?
 - b) What is the velocity and speed of the rock when it is at 256 ft above the ground on the way up? on the way down ?
 - c) What is the acceleration of the rock at any time t during its flight ?
- 35. Sketch the graph of the function $y = x^4 4x^3 + 10$, by inspecting increasing, decreasing, concavity, points of inflection, local extrema etc.
- 36. a) A curved wedge is cut from a cylinder of radius 3 by two planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the first plane at 45° angle at the center of the cylinder. Find the volume of the wedge by slicing method.
 - b) Find the area of the region bounded by the curves $y = x^2$ and $y = x^4 4x^2 + 4$.

 $(2 \times 10 = 20 \text{ marks})$