319360

D 32374

(Pages : 3)

Name.....

Reg. No.....

FIRST SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2022

Mathematics

MTS 1C 01—MATHEMATICS—I

(2019–2022 Admissions)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Maximum 20 marks.

- 1. Calculate the slope of the tangent line to the graph of $y = x^2$ at x = 1.
- 2. Find $\lim_{x \to -5} \frac{x^2 + 3x 10}{x + 5}$.
- 3. If *f* has a derivative at x = c, then prove that *f* is continuous at x = c.
- 4. Find the derivative of $y = \frac{2x+5}{3x-2}$.
- 5. Find the linearization of $f(x) = x^4$ when x = 1.
- 6. Find $\frac{d}{dx} \left[\tan \left(x^2 + 1 \right) \right]$.
- 7. Find $\lim_{x \to 0} \frac{(1+x)^n 1}{x}$.
- 8. Find points of inflection on the curve $y = 3x^4 4x^3 + 1$.
- 9. Find the intervals on which the function $g(t) = -t^2 3t + 3$ is increasing and decreasing.

Turn over

319360

10. Evaluate
$$\sum_{k=1}^{7} -2k$$

11. Using limits of Riemann sums, establish the equation $\int_{a}^{b} c \, dx = c \, (b-a)$, where c is a constant.

12. Find
$$\int_{1}^{2} \frac{x^2 + 2x + 2}{x^4} dx$$
.

Section **B**

Answer any number of questions. Each question carries 5 marks. Maximum 30 marks.

- 13. If $\lim_{x \to 4} \frac{f(x) 5}{x 2} = 1$, find $\lim_{x \to 4} f(x)$.
- 14. Show that the line y = mx + b is its own tangent at any point (x, mx + b) on the line.
- 15. An oil slick has area $y = 30x^3 + 100x$ square meters x minutes after a tanker explosion. Find the average rate of change in area with respect to time during the period from x = 2 to x = 3 and from x = 2 to x = 2.1. What is the instantaneous rate of change of area with respect to time at x = 2?
- 16. State and prove power rule for positive integers.
- 17. Find the maximum and minimum points and values for the function $f(x) = (x^2 8x + 12)^4$ on the interval [-10, 10].
- 18. Evaluate $\lim_{x \to 0} \left(\frac{1}{\sin x} \frac{1}{x} \right)$.
- 19. Find the area of the region in the first quadrant bounded by the line y = x.the line x = 2,the curve $y = 1/x^2$, and the axis.

D 32374

3

Section C

Answer any **one** question. Each question carries 10 marks. Maximum 10 marks.

- 20. (a) Find the area of the region enclosed by the parabola $y = 2 x^2$ and the line y = -x.
 - (b) Evaluate $\frac{d}{dx} \int_{0}^{\sqrt{x}} \cos t \, dt$.
- 21. (a) Find the absolute maximum and minimum values of $f(x) = x^2$ on [-2, 1].
 - (b) Evaluate $\lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}$.
 - (c) State and prove the product rule of differentiation.