SECOND SEMESTER (CBCSS-UG) DEGREE EXAMINATION, APRIL 2022

Mathematics

MTS 2C 01—MATHEMATICS—2

(2021 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer at least **eight** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

- 1. Find the inverse of $f(x) = \frac{2x-3}{5x-7}$, where the domain of f excludes $x = \frac{7}{5}$.
- 2. Find the Cartesian form of the polar equation $r = \sin 2\theta$.
- 3. Express the number $\coth^{-1}(5/4)$ in terms of natural logarithms.
- 4. Prove that $\tanh^2 x + \operatorname{sech}^2 x = 1$.
- 5. Show that the series $1 + \frac{1}{2} + \frac{1}{2^2} + \dots$ converges and also find its sum.
- 6. Find the norm of the vector (3, 4, 0, 1, -1). Also normalize the vector.
- 7. Determine the radius of convergence of $\sum_{k=0}^{\infty} \frac{k^5}{(k+1)!} x^k$.
- 8. Find a basis and then give the dimension of solution space of.
- 9. Find the inner product of the vectors $\mathbf{a} = \langle 1, 2, 3 \rangle$ and $\mathbf{b} = \langle 0, -2, 1 \rangle$ in \mathbb{R}^3 . Are the vectors orthogonal?
- 10. Show that $A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ is an orthogonal matrix.

Turn over

2 C 22093

- 11. If $A = \begin{bmatrix} 10 & 3 \\ 4 & 6 \end{bmatrix}$ find A^3 using Cayley Hamilton theorem.
- 12. Find the inverse of the 2×2 matrix $A = \begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}$.

 $(8 \times 3 = 24 \text{ marks})$

Section B

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Find the length of the graph of $f(x) = (x-1)^{3/2} + 2$ on [1, 2].
- 14. Diagonalize the matrix $A = \begin{bmatrix} 1 & -6 \\ 2 & 2 \end{bmatrix}$.
- 15. Find the length of the perimeter of the cardioid $r = \alpha(1 + \cos \theta)$.
- 16. Find an approximation value of $\int_{0}^{1} x^{2} dx$ by Simpson's rule with n = 10.
- 17. Expand $\log x$ in ascending powers of x-1 as for the term containing $(x-1)^4$.
- 18. $B_1 = \{u_1, u_2, u_3\}$, where $u_1 = \langle 2, -1, 1 \rangle$, $u_2 = \langle 1, 5, 1 \rangle$, $u_3 = \langle 0, 1, 2 \rangle$, is a basis for \mathbb{R}^2 . Transform it into an orthonormal basis $B_2 = \{w_1, w_2, w_3\}$.
- 19. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ by reducing it to the echelon form.

 $(5 \times 5 = 25 \text{ marks})$

3 C 22093

Section C

Answer any **one** question. The question carries 11 marks.

- 20. (a) Find the area of the region shared by the circles r = 1 and $r = 2 \sin \theta$.
 - (b) Show that the set $B = \{(1, 2, 1), (2, 1, 0), (1, -1, 2)\}$ is a basis for R^3 .
- 21. (a) Using Gauss-Jordan elimination method, solve the system of equations:

$$\begin{array}{rclrcrcr}
 x & + & 2y & + & z & = & 2 \\
 3x & + & y & - & 2z & = & 1 \\
 4x & - & 3y & - & z & = & 3 \\
 2x & + & 4y & + & 2z & = & 4
 \end{array}$$

(b) Find the eigen values of
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{bmatrix}$$

 $(1 \times 11 = 11 \text{ marks})$