82	44	6
	82	8244

(Pages: 2)

Name......Reg. No....

SECOND SEMESTER B.A./B.Sc. DEGREE EXAMINATION, APRIL 2020

(CBCSS-UG)

Mathematics

MAT 2C 02-MATHEMATICS-II

(2019 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer any number of questions.

Each question carries 2 marks.

Maximum 20 marks.

- 1. If $f(x) = x^3 + 2x + 1$, show that f has an inverse on [0, 2], Find the derivative of the inverse function at y = 4.
- 2. Calculate the slope of the line tangent to $r = f(\theta)$ at (r, θ) if f has a local maximum there.
- 3. Prove that $\tanh^2 x + \operatorname{sech}^2 x = 1$.
- 4. Find $\int \frac{dx}{\sqrt{4+x^2}}$.
- 5. Show that $\int_{0}^{\infty} \frac{dx}{\sqrt{1+x^8}}$ is convergent, by comparison with $\frac{1}{x^4}$.
- 6. Find $\lim_{n\to\infty} \left(\frac{n^2+1}{3n^2+n}\right)$.
- 7. Sum the series $\sum_{i=1}^{\infty} \left(\frac{7}{8}\right)^i$.
- 8. State integral test and show that $\sum_{m=2}^{\infty} \frac{1}{m(\ln m)^2}$ converges.
- 9. Define dimension of a vector space. Find the dimension of the vector space P_n of all polynomial of degree less than or equal to n.
- 10. Determine whether the set of all functions f with f(1) = 0 is a subspace of the vector space $C(-\infty, \infty)$.

11. Use inverse of coefficient matrix to solve the system:

$$2x_1 - 9x_2 = 15$$
$$3x_1 + 6x_2 = 16$$

12. Find the eigenvalues and eigenvectors of $A = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix}$.

Section B

Answer any number of questions. Each question carries 5 marks. Maximum 30 marks.

- 13. Polygonal line joining the points (2, 0), (4, 4), (7, 5) and (8, 3) is revolved about the x-axis. Find the area of the resulting surface of revolution.
- Find the length of the cardiod $r = 1 + \cos \theta$, $0 \le \pi \le 2\pi$.
- Find the power series of the form $\sum_{i=0}^{\infty} a_i x^i$ for $\frac{23-7x}{(3-x)(4-x)}$. Also find the radius of convergence.
- Evaluate $\lim_{x\to\infty} \frac{\sin x x}{x^3}$ using a Macluarin's series.
- Use Gram Schmidt orthonormalization process to transform the basis $\{u_1, u_2, u_3\}$ for \mathbb{R}^3 into an orthonormal basis B' = $\{w_1, w_2, w_3\}$, where u_1 = (1, 1, 0), u_2 = (1, 2, 2) and u_3 = (2, 2, 1).
- 18. Compute A^m for $A = \begin{pmatrix} 8 & 5 \\ 4 & 0 \end{pmatrix}$.
- 19. Find LU factorization of $A = \begin{pmatrix} 2 & -8 \\ 3 & 0 \end{pmatrix}$.

Section C

Answer any one question. The question carries 10 marks. Maximum 10 Marks.

- (b) Calculate $\sin\left(\frac{\pi}{4} + 0.06\right)$ to within 0.0001 by using Taylor's series about $x_0 = \frac{\pi}{4}$.
- 21. (a) Use an LU factorization to evaluate the determinant of $A = \begin{pmatrix} -1 & 2 & -4 \\ 2 & -5 & 10 \\ 2 & 1 & 6 \end{pmatrix}$.
 - (b) Find the rank of A = $\begin{pmatrix} 1 & 1 & -1 & 3 \\ 2 & -2 & 6 & 8 \\ 3 & 5 & -7 & 8 \end{pmatrix}$

www mailly

 $(1 \times 10 = 10 \text{ marks})$