THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2022

Mathematics

MTS 3C 03—MATHEMATICS - 3

(2019 Admission Onwards)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer any number of questions.

Maximum 20 marks.

1. Find the derivative of the vector function $\vec{r}(t) = \sin t \ \hat{i} - e^{-t} \hat{j} + (3t^3 - 4)\hat{k}$.

2. If
$$z = 4x^3y^2 - 6x^2 + y^2 + 5$$
, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

3. If
$$f(x,y) = e^{xy}$$
, find $\nabla f(x,y)$.

4. Find the level curve of $f(x,y) = y^2 - x^2$ passing through the point (-1, 2).

5. Find div
$$\vec{F}$$
 for $\vec{F} = (x^2y^3 - z^4)\hat{i} + 4x^5y^2z\hat{j} - y^4z^6\hat{k}$.

6. Evaluate
$$\int_{1}^{3} \int_{1}^{1} (2x-4) dx$$
.

- 7. State Stoke's theorem.
- 8. Find the Jacobian of $x = r \cos \theta$, $y = r \sin \theta$.
- 9. Express 1 + i in polar form.
- 10. Evaluate $\lim_{z \to i} \frac{z^4 1}{z i}$.

Turn over

289708

D 31819

11. Evaluate
$$\oint_C \frac{e^z}{z-3} dz$$
 where C is $|z|=1$.

12. Evaluate
$$\oint_C \overline{z} dz$$
 where C is $x = t$, $y = t^2$, $0 \le t \le 1$.

Section B

2

Answer any number of questions.

Maximum 30 marks.

13. Use chain rule to find
$$\frac{\partial z}{\partial u}$$
 at $(\pi,1)$ for $z = x^2 - y^2 \tan x$, where $x = \frac{u}{v}$, $y = uv$.

14. Find an equation of the tangent plane to the graph of
$$z = \frac{x^2}{2} + \frac{y^2}{2} + 4$$
 at $(1, -1, 5)$.

15. Show that
$$\int_{C} (y^2 - 6xy + 6) dx + (2xy - 3x^2) dy$$
 is independent of any path C between (-1, 0) and

(3, 4). Hence evaluate
$$\int_{(-1,0)}^{(3,4)} \left(y^2 - 6xy + 6\right) dx + \left(2xy - 3x^2\right) dy$$
.

16. Change the order of integration and hence evaluate
$$\int_{0}^{44} \int_{y}^{4} \frac{x}{x^2 + y^2} dx dy$$
.

17. Show that
$$u(x,y) = x^3 - 3xy^2 - 5y$$
 is harmonic. Find the harmonic conjugate of u .

18. Evaluate
$$\int_{C} z^2 dz$$
 where C is the line $x = 2y$ from $z = 0$ to $z = 2 + i$.

19. Evaluate
$$\oint_C \frac{z+1}{z^4+4z^3} dz$$
 where C is $|z| = 1$.

3 **D 31819**

Section C

Answer any one question.

Maximum 10 marks.

- 20. Use Green's theorem to evaluate $\oint_C (x^5 + 3y) dx + (2x e^{y^3}) dy$ where C is the circle $(x-1)^2 + (y-5)^2 = 4$.
- 21. Find the volume bounded by the cylinder $x^2 + y^2 = 4$, the plane y + z = 3 and z = 0.

 $(1 \times 10 = 10 \text{ marks})$