## THIRD SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2023

**Mathematics** 

MTS 3C 03—MATHEMATICS—3

(2019—2022 Admissions)

Time: Two Hours

Maximum: 60 Marks

## Part A

All questions can be attended. Each question carries 2 marks. Overall Ceiling is 20.

- 1. If  $r(t) = \cos 2t \ i + \sin t \ j$ . Find r'(0).
- 2. Find the curvature of a circle of radius a.
- 3. Describe the level surfaces of the function  $F(x, y, z) = \frac{(xr + y^2)}{z}$ .
- 4. If  $F = (x^2y^3 z^4)i + 4x^5y^2z j + y^4z^6 k$ , find div (curl F).
- 5. Evaluate  $\int xy^2 dy$  on the quarter-circle C defined by  $x = 4 \cos t$ ,  $y = 4 \sin t$ ,  $0 \le t \le \frac{\pi}{2}$ .
- 6. Find  $\int_{C} ydx + xdy$  on the curves  $y = \sqrt{x}$  between (0,0) and between (1,1).
- 7. Convert  $(6, \pi/4, \pi/3)$  in spherical coordinates to rectangular co-ordinates.
- 8. Find the values of  $\ln(-1, -i)$ .
- 9. Prove that  $\sinh z = \sinh x \cos y + i \cosh x \sin y$ .

Turn over

2

D 51761

- 10. Evaluate  $\int (z+3) dz$ , where C is x = 2t, y = 4t 1,  $1 \le t \le 3$ .
- 11. Evaluate  $\oint_{C} z^3 1 + 3i \, dz$ , where C is the circle |z| = 1.
- 12. State Cauchys Integral Formula.

## Part B

All questions can be attended. Each question carries 5 marks. Overall Ceiling is 30.

- 13. Find an equation of the tangent plane to the graph of  $\frac{1}{2}x^2 + \frac{1}{2}y^2 z = 4$  at (1, -1, 5).
- 14. Find the maximum value of the directional derivative of  $F(x, y, z) = xy^2 4x^2 y + z^2$  at (1, -1, 2) in the direction of 6i + 2j + 3k.
- 15. Find the moment of inertia about the *y*-axis of the thin homogeneous disk  $x^2 + y^2 = r^2$  of mass *m*. Given  $\rho(x, y) = \frac{m}{\pi r^2}$ .
- 16. Find the volume of the solid that is under the hemisphere  $z = \sqrt{1 x^2 y^2}$  and above the region bounded by the graph of the circle  $x^2 + y^2 y = 0$ .  $V = \iint_R \sqrt{1 x^2 y^2} dA$ .
- 17. (a) Verify that the function  $u(x, y) = x^3 3xy^2 5y$  is harmonic in the entire complex plane.
  - (b) Find the harmonic conjugate function of *u*.
- 18. Solve the equation  $\cos z = 10$ .
- 19. Evaluate  $\oint_{\mathcal{C}} \frac{dz}{z^2 + 1}$  where  $\mathcal{C}$  is the circle |z| = 3.

3 **D 51761** 

## Part C

Answer any **one** question. The question carries 10 marks.

- 20. Verify Stokes theorem. Assume that the surface S is oriented upward. Given F = z i + x j + y k; S that portion of the plane 2x + y + 2z = 6 in the first octant.
- 21. Let D be the region bounded by the hemisphere  $x^2 + y^2 + (z-1)^2 = 9$ ,  $1 \le z \le 4$ , and the plane z = 1. Verify the divergence theorem if F = xi + yj + (z-1)k.

 $(1 \times 10 = 10 \text{ marks})$