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Abstract. Internet phishing has become a continual threat that keeps growing day by day. Phishing takes advantage of the
user’s trust and use social engineering techniques to deceive them. Despite having several anti-phishing strategies, the threat
of phishing is not mitigated as modern types of attack keeps coming to the fore. Nowadays, phishers launch sophisticated
phishing attacks which tricks users to submit their credentials by leveraging the facilities tabs offer to web browsers. Browser
security is important in this perspective. This paper explains a heuristic method to defend phishing attacks by utilizing
software agents for parallel attack recognition. The main focus is on a browser based attack called Tabnabbing which takes
action in inactive browser tabs. The proposed method uses agents in three levels to continuously monitor the presence of
attack in regular intervals at multiple tabs and warn the user at the earliest. This approach also protects the users against URL
obfuscations and malicious links. Results show that the proposed method outperforms the state of the art phishing detection
methods and achieves an accuracy of 97.3%.
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1. Introduction

As Internet has claimed a major role in our daily
life, criminals have become very active in stealing
sensitive information using phishing websites. Phish-
ing [19] is an art of deception wherein secure websites
are so perfectly impersonated that even cautious users
are tricked. There has been a greater focus on the sub-
ject of securing web services with increase in the use
of the Internet for online transactions. Through the
last decades, the web has become more and more
client centric, where the browser has turned out to be
a major platform for sophisticated web applications.
Browsers display the web pages using an underly-
ing web protocol called Hyper Text Transfer Protocol
[25]. Eventhough HTTP allows for the quick and
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easy transmission of information, it is not secure as
there is a possibility for someone to eavesdrop to the
conversation between servers and clients.

In order to ensure secure transactions, websites
use HTTPS (secure HTTP) rather than HTTP in its
address. However, even if a site address displays
HTTPS, it might still be a phishing web page as there
are spoofing techniques [36] to make a bogus web-
page appear to be using HTTPS protocol. Attackers
can carry out several attacks within the web platform
using scripting support [11], loopholes in software
and design of web browsers.Some of the known web
browser security risks include “social engineering”,
“clickjacking”, “session hijacking” and cross domain
vulnerabilities [22] like “cross site scripting” [37]
and “cross site request forgery”. These techniques
run the gamut from simple eavesdropping, through
theft of identity and personal information, to financial
losses. Despite having a number of Internet security
technologies available, none of them provide enough
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security to Internet users. In this regard, a new tech-
nology using intelligent agents is being introduced to
increase the efficiency and security of the Internet,
which may replace the existing technologies. Also,
the same problems are more and more common on
smart phones. As for the “fixed” world, also on such
devices, there are several counter measures mainly
based on Cryptography such as the ones presented in
[8, 9, 13, 16, 26, 41].

The power of artificial intelligence can be utilized
for a large number of applications and environments
by creating mechanical maids behave like humans.
The computational agents with intelligent behavior
can be made available on the Internet for making
Internet browsing secure.

This paper focuses on a browser-based attack
called tabnabbing and a novel approach for its parallel
detection in multiple tabs using distributed software
agents. Tabnabbing [3] is a phishing attack within
a browser and it targets a user who keeps many
tabs open at a time. As the user navigates through
a bunch of open tabs, phishers set up a rogue web-
site which looks exactly like the genuine one and
load the inactive tab with the counterfeited webpage.
When the user switches back to the tab, it appears
to be a site frequented by the user. As the user does
not remember how each tab looked like before tab
switch, he will give his credentials to the honest look-
ing page and is trapped. Unlike other attacks, this
deception technique is likely to betray even the most
security-conscious web surfers as it exploits user’s
trust and inattention in browser tabs. The attack relies
on human memory weakness and masquerades the
favicon, title, and layout of a webpage familiar to the
user. The proposed method uses structural features of
a webpage to combat tabnabbing.

The rest of this paper is structured as follows. Next
section describes related work. Section 3 gives an
overview of multi agent systems. Section 4 discusses
the system model for phishing attack recognition.
Section 5 describes the methodology of the proposed
framework. Section 6 discusses implementation fol-
lowed by experimental results. Discussion part is
included in Sections 7 and 8 concludes the paper.

2. Related work

Phishing is a social engineering attack to illegally
acquire and use someone else’s data on behalf of a
legitimate website for financial or personal benefit.
Phishing attacks target the human factor in browsing

for evasion. Recently, online attacks are unbelievably
widespread and use mechanisms that exploit weak-
nesses found in end-users. Adversaries employ a large
number of spoofing tricks such as URL obfuscation,
embedding malicious links and hiding dangerous
codes to make a phishing web site look innocent to
the victim. Truly speaking, there is no single silver-
bullet solution to resist all the attacks effectively, thus
multiple techniques are required to mitigate specific
attacks. Also, as soon as we become competent to
identify a particular type of attack, another more
sophisticated version appears. So, phishing detec-
tion is a complicated and continuous process which
should be handled technically using appropriate secu-
rity measures implemented either at client or server
side.

Among the existing strategies, the basic phishing
detection method is a list-based approach (black-
list and whitelist). In blacklist approach, the system
keeps a pre-compiled list of URLs which were
found to be malicious at some point in time. In
[29], Pawan Prakash et al. have proposed a heuristic
and blacklist based approach called PhishNet, to
detect phishing attacks. The method comprises a
URL prediction component and an approximate URL
matching component. Phishnet is effective at finding
new URLs that were not part of the original black-
list and offers low false negative and false positive
rates.

The whitelist based solution keeps a list of legit-
imate URLs that prevent access to phishing sites by
URL similarity check. Some of the methods which
use whitelist is explained in [1, 20, 39, 42]. The list
based methods need the list to be periodically updated
as it may become obsolete too soon. In order to solve
this problem, different heuristic methods [1, 28] are
proposed which uses characteristics of the webpages
and URL to identify phishing sites. Heuristic methods
often use machine learning methods for classification
as explained in [2, 38, 45]. However, heuristic and
machine learning techniques might fail when attack-
ers host phishing attacks on servers and also they
cannot detect the phishing sites designed fully with
images. In [23], Juan Chen has explained LinkGuard,
a character based antiphishing approach which uti-
lizes the generic characteristics of the hyperlinks in
phishing attacks. This technique is inefficient as it
may create more false positives. Another method
SpoofGuard [36], extracts phishing signatures via
suspicious URLs, images, links, and passwords in a
webpage. The approach is easy to evade as it cannot
handle images with modifications.
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Phishers often design fake pages with layout and
content similar to a legitimate page to deceive users.
The content-based approaches, analyzes the HTML
code and text on a webpage, proved effective in
detecting phishing pages. Zhang et al. proposed a
content based solution, CANTINA [43] which uses
TF-IDF information retrieval algorithm for phishing
detection. The adversaries can evade this technique
by using images and invisible text in webpages. Gold-
Phish [24] is another content based approach which
captures the image of webpage and uses optical char-
acter recognition to convert the image to text. This
method provides zero day phishing but is vulnera-
ble to attacks on Google’s PageRank algorithm and
Google’s search service. The content based methods
are susceptible for attacks launched using fake pages
with same visual layout as the genuine page. Nowa-
days, phishers have started compiling phishing pages
with non-HTML components, such as images, Flash
objects, and Java applets so as to beat existing tech-
niques. In order to deal with it, some visual similarity
based methods such as [4, 10, 14, 40] are proposed
which considers the visual appearance of a website
for similarity assessment.

The aforementioned approaches focus on the older
variants of phishing. Tabnabbing is a modern browser
security threat and its current management modalities
are briefly explained below.

NoScript [27] and YesScript [44] are Firefox add-
ons, preventing websites from running JavaScript
[11], Java, Flash or other plugins. But they do not pro-
vide protection in other browsers. NoTabNab [34] is a
Firefox add-on proposed by Unlu and Bicakci which
protects users from tabnabbing attack by using the
positioning of HTML elements of a webpage. The
key problem in this technique is related to resizing
the browser, as only some web pages are designed to
re-layout themselves.

Suri et al. has presented a signature based detec-
tion mechanism [31] to deal with tabnabbing. The
method defines a set of rules to scrutinize vulnera-
ble JavaScript code. But this paper focuses only on
iframe elements which is not always necessary for a
tabnabbing attack.

Tab-Shots [12] is a browser extension which uses
visual appearance of a webpage to detect tabnabbing.
The method works by remembering what each tab
looked like, whenever a tab is changed by recording
the favicon and screenshots of the presently focused
tab at regular time periods. The main limitation of
this technique is the inefficiency in detecting small
changes in a page.

TabsGuard [15] combines heuristic based metrics
and data mining techniques to detect tabnabbing. The
approach keeps track of the changes made to the struc-
ture of a page during the time when the page is idle.

Existent anti-tabnabbing methods detect the lay-
out change and warn the user only when the tab is on
focus after being nabbed and they focus on the change
in page layout, title and favicon, not much attention
is given to change in URL. Our approach is similar
to the method proposed by Fahim et al. [15] where
structural features of a webpage are analyzed but the
selected features are different. The proposed method
uses agents to concurrently monitor the change in
webpage layout at regular intervals in all the tabs of a
browser and alerts the user about the attack wherein
he can act accordingly. The method also provides
a mechanism to monitor fraudulent URLs and thus
combat three types of phishing attacks simultane-
ously. The major contributions of this paper are:

• A multi agent based framework that combines
blacklisting and heuristic-based approaches.

• An effective mechanism for simultaneous detec-
tion of phishing in multiple tabs.

• A security model to protect users from tabn-
abbing attack, URL obfuscations and malicious
links by giving explicit warnings.

3. Multi Agent Systems (MAS)

People have always been fascinated with the idea of
non-human agencies. It will be quite interesting if we
can complete our task using a mechanical maid with
artificial intelligence, capable of exhibiting human
expertise. Here comes the significance of agent tech-
nology. The idea of an agent originated with John
McCarthy in the mid-1950 s. As a definition, agents
[7] are software entities that assist people and act on
their behalf. The awesome power of agents has engen-
dered a lot of excitement in recent years because of
its efficacy as a new paradigm for solving critical
problems. As the technology matures and addresses
complex and sophisticated problems, the need for
systems that consist of multiple agents become appar-
ent. The MAS approach [35] seems to be the most
feasible solution for such scenarios. Here multiple
agents in a system co-ordinate with each other to solve
some interdependent problems.

The significant properties of MAS are:

– Autonomy: Each agent is an autonomous mod-
ule with different capabilities or functionalities
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and can work in concert with other agents to
achieve a variety of goals.

– Parallelism: Simultaneous working of agents is
possible in the MAS approach. A complex prob-
lem could be solved in a reasonable time by using
a number of agents in parallel.

– Adaptivity: The agents in MAS are able to learn
and improve with experience. They react in a
flexible manner according to the change in envi-
ronment. The agents can assist each other to
compensate any lack of capability or knowledge.
They cooperate and share information with other
agents to resolve a newly emerged problem, if
one agent is unable to do so.

– Reactivity: The agents are able to selectively
sense and act in Multi Agent System. Each agent
thinks and acts locally to achieve its goals.

4. System model

The proposed method is a modular, multi-agent
architecture, where the webpage activities are mon-
itored and controlled by deliberative BDI (Belief,
Desire, and Intention) agents [33]. The agents are
hierarchically organized with the possibility to share
and delegate activities and/or responsibilities. Multi-
agent systems are incorporated to bring modularity
and parallelism where all the computing tasks are del-
egated to the agents. The agent platform integrates a
set of agents with specific functionalities. As the dis-
tributed Multi Agent platform is designed by means
of modeling the functionalities of agents, all commu-
nications take place through agents thereby reducing
the system control. The agents communicate in the
platform using FIPA Agent Communication Lan-
guage [6]. FIPA guarantees interoperability between
the agents by coordinating communication and man-
agement of agents.

As shown in Fig. 1, the proposed framework con-
sists of four operational agents when a webpage is
opened in a browser tab. The agents in this system are:

• T-agent
• U-agent
• M-agent
• I-agent

Whenever a new tab is opened, fresh pair of level 1
agents (U-agent and T-agent) are created to observe
the activities in that tab to detect a malicious nature.
When the tab is closed, they are disposed off. Level
one agent is managed by a level two agent (M-agent).

Fig. 1. Hierarchy of agents.

The interface between the user and the system is pro-
vided by level three agents (I-agent).

T-agent or Tabnab agent is a level 1 agent respon-
sible for handling incoming requests from browsers
for webpages. The T-agents in each tab performs its
delegated task in two phases, Feature Extraction and
Feature Comparison for detecting tabnabbing in a
webpage.

When a webpage is loaded, T-agent extracts its five
tuple information (text, image, URL, title, favicon)
and record for the next phase. The procedure is con-
tinued every 60 seconds. The values from subsequent
feature extractions are matched with the recorded val-
ues to obtain a resemblance score for each pair of
elements. If the resemblance score is higher than a
threshold t, the currently visited web page is consid-
ered as similar to the recorded one.

U-agents work when the URL of the webpage is
changed after a tab switch event or inert tab. The tech-
nique uses a URL blacklist to find fraudulent URLs.
Blacklisting works on the basis of a pre-compiled list
of URLs which are found to be malicious at some
point of time. The U-agent queries the URL black-
list to determine whether the currently visited URL
is on this list. If the URL is included in the black list,
the user is given an explicit message. Otherwise, the
URL is given a structural analysis to check whether
it is fake or genuine.

M-agent acts as a manager who is responsible
for coordination, communication, decision-making
and its evaluation. This agent evaluates the decisions
taken and immediate actions follow.
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Fig. 2. Functionality of the system.

I-agent is an interface agent which deals with the
interaction of the user with the system. The interface
agent communicates to the user about the detection
of attack and displays a proper message. They can act
autonomously to perform operations without explicit
directions from the user.

5. Methodology

The operation of the proposed system is illustrated
in Fig. 2 and is summarized as follows:

5.1. Feature extraction

Feature extraction is a quantitative way of captur-
ing a set of features that describe various aspects
of a page. These features cover text, image, URL,
title and favicon of the current page. During the
first pass, T-agent stores these values for later
use.

SAX parser [21] is used for text extraction as it is
an effective mechanism to parse the webpage.SAX
is an event based parser, which support more sim-
ple forms of interaction with the data and allows
handling of larger documents. SAX processing is
attractive as it does not load any XML docu-
ments into memory. Therefore it is lightweight and
fast.

Concerning image extraction, the approach
extracts the source address of the image src attribute
which can be obtained from the SAX parser out-
put, the area occupied by the image in pixel and
its position in webpage, and RGB color histograms.
The hyperlinks in the webpage are also extracted
and stored to verify if they are mischievous. Feature
extraction process is explained formally in Algo-
rithm 1.

Algorithm 1. extractFeatures

Input: Webpage w

Output: Extracted features of w

1. Open the webpage w

2. Parsecount = 0
3. U <-webpage URL
4. T <-Parse w using SAX
5. H <-hyperlinksFilter(T )
6. Ti <-getTitle(T )
7. extractFavicon(w)
8. extractImages(w)
9. Parsecount++

5.2. Feature comparison

Feature comparison is performed by comparing
matching elements separately. The syntactic similar-
ity of two text documents d1 and d2 are calculated
to get a resemblance score Rt, which is a number
between 0 and 1. The resemblance of the correspond-
ing documents can be computed in time linear in the
size of the sketches [5]. In this method, each doc-
ument is viewed as a sequence of words, and start
by lexically analyzing it into a canonical sequence
of tokens. A set of subsequences of tokens s (d, n)
are associated with every document d. A contigu-
ous subsequence contained in d is called a shingle.
For a given shingle size, the resemblance Rt of two
documents d1 and d2 is defined as:

Rt(d1, d2) = s(d1) ∪ s(d2)

s(d1) ∩ s(d2)
. (1)

Then, compare all image elements to obtain a
resemblance score Ri. Comparison of each image is
performed as follows:

• Comparisons of source address of the image src
attribute
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The resemblance between the two src attributes is
computed using the Levenshtein distance.

• Comparison of RGB color histogram

The resemblance between the two matrices repre-
senting the color histograms H and H1 using 1-norm
distance as

1 − L1(H, H1). (2)

• Comparison of pixel positions occupied by the
image.

The resemblance between the two positions in a
webpage is computed as

1 − (d/Md), (3)

where d is the Euclidean distance between the two
points and Md is the maximum Euclidean distance
between two points.

• Comparison of the area occupied by the image
in pixel

The similarity between the two images areas A and
A1 are calculated as:[

1 − |A − A1|
Max(A, A1)

]
. (4)

Using these four scores, a single resemblance score
Ri ∈ [0, 1] is derived. The webpage addresses are
monitored and recorded in regular intervals to obtain
a resemblance score Ru. Favicons are compared by
source to get a resemblance score Rf. These are indi-
cated using Boolean values 0 and 1, where 0 means no
resemblance and 1 means perfect match. Title of the
webpage is matched with the old one to find a resem-
blance score Rti. Finally, the overall resemblance of
the two pages are calculated as

R = Rt + Ri + Ru + Rf + Rti. (5)

The resemblance score is greater than a thresh-
old t, for similar pages. If there is a radical change,
the user is informed about the presence of an attack
by displaying an alert message. A desirable value
of threshold t is to be chosen to identify the exis-
tence of an attack. A higher threshold is preferable
in this case as tabnabbing may change the aforemen-
tioned parameters to launch an attack. Pseudocode for
feature comparison is given in Algorithm 2. T-agent
computes the overall resemblance score after getting
the value of Ru from U-agent.

Algorithm 2. compareFeatures

Input: Webpage w

Output: Resemblance score
1. Add new TickerBehaviour to T-agent for every 60 seconds
2. extractFeatures(w)
3. if (Parsecount >1) then
4. Rt <-compare Text()
5. Ri <-compareImages() //from stored directory
6. Rf <-compareFavicon()
7. Ru <-compareURL()
8. Rti <-compareTitle()
9. R = Rt + Ri + Rf + Ru + Rti

10. return R

11. else
12. return false
13. end if

5.2.1. Structural analysis of URL
During the feature comparison phase, when the

stored URL and currently visited URL are found to
be different, the U-agent checks whether the recently
visited URL is blacklisted. If the URL is included
in the black list, the user is advised accordingly. For
the blacklist to work properly, it should ideally con-
tain every phishing website, which is impossible. As
a result, it can lead to a number of false positives. So,
the webpage addresses that are not blocked by the
blacklist are given a structural analysis in which 25
salient features are selected from the doubtful URL
and a total score is calculated. Occurrence of each
feature in URL will add one to the total score of the
URL check. If the score is above a certain threshold,
the page is marked as phishing. The default threshold
is three detections. Algorithm 3 shows the various
steps in evaluating the URL of a webpage.

Algorithm 3. behaviourofURL

Input: Webpage w, Blacklist BL

Output: URL Check result 0: Legitimate
1: Phishing

1. if URL is changed then
2. if changed URL in BL then
3. return 1
4. else
5. extractURLfeatures(U)
6. URLCheck()
7. if URLCheckscore >=3 then
8. return 1
9. else
10. return 0
11. end if
12. end if
13. else
14. return 0
15. end if
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Table 1
Feature types and its count

Feature Type Count

Lexical 5
Token based 10
Target based 10

The result of URL check is forwarded to T-agent
for further steps. If the result of URL check is less
than 3, the referred URL is reliable and returns the
value 0 to T-agent otherwise return 1 to convey that
the URL is not reliable.

For structural analysis, the proposed method uses
25 features selected by observing the heuristics in
the structure of phishing URLs and also by referring
literature [17, 32]. As shown in Table 1, there are 5
lexical features, 10 token based features and 10 target
based features.

• Lexical Features

The lexical (textual) features help us to identify that
malicious URLs tend to “look different” from legal
URLs. The approach has chosen 5 lexical features by
analyzed the composition of phishing URLs in Phish-
Tank.com. The lexical features include digit in host,
IP address in URL, number of suspicious characters
‘@’, number of dots in path and length of the URL.

• Token Based Features

The malicious URLs may contain some eye catch-
ing keywords or tokens to attract end users. The
selected 10 keywords include login, signin, update,
verify, secure, banking, webscr, dispatch, cgi and
account.

• Target Name Features

From PhishTank data archive, an analysis was done
for different monthly stats archive and collected top
10 brands used by fraudsters during the period from
June to December 2015. The most popular target was
Paypal. There were 4103 valid phishes against this
site. The other targets include Apple, AOL, Facebook,
eBay, Google, JPMorgan, WellsFargo, WalMart and
Bradesco.

6. Implementation

The implementation of the proposed method uses
JADE software framework [18] in java platform.
Google chrome was selected as the browser as it is
vulnerable to modern type of attacks. The method

currently has a simple user interface, displaying an
alert message to the user if a webpage is deemed as
phishing.

6.1. Experimental evaluation

Two experiments were conducted to assess the per-
formance of our agent based method. In the first
experiment, we examined the effectiveness of our
multi agent architecture for detecting tabnabbing.
The second set of experiments is conducted to ana-
lyze the performance of the approach in identifying
URL obfuscations and suspicious links in a webpage.
Finally, we evaluated the overall effectiveness of our
method by comparing with existing techniques in
terms of accuracy and precision.

6.1.1. Tabnabbing attack detection
In this experiment, we evaluated how much effec-

tive our agent based method was in detecting
tabnabbing. The data set consists of a set of common
webpages with login forms such as banking sites, web
mail clients, credit cards, and social networking sites
as tabnabbing targets webpages which can provide
confidential information of users. The approach used
1000 unique webpages with login forms from differ-
ent sources for attack recognition as shown in Table 2.
To make a list of blacklisted URLs, a collection of real
phishing sites from PhishTank were taken.

Tabnabbing attack was simulated in these web-
pages by running a script. The simulation of attack
used eight tabnabbing pages from different categories
like social networking, email, banking and money
transaction sites with the appearance similar to the
real ones (Facebook, Twitter, eBay, Gmail, Hotmail,
Paypal, Citibank and Bradesco). Tabnabbing attack
was simulated in these webpages by running a script.

For the simulation, the agent platform is started
and the webpages were loaded in the dataset in dif-
ferent tabs of the browser. The script was run for
the currently focused window and a tab switch was
performed to some other window. When the user
returned to that inactive tab after 60 seconds, the
webpage had changed to a tabnabbing page (already
created). A time interval of 60 seconds is set with

Table 2
Sources of dataset

Sources No. of webpages Percentage

Alexa 270 27%
Banks 530 53%
DMOZ 200 20%



A
U

TH
O

R
 C

O
P

Y

3280 S. Sarika and V. Paul / Parallel phishing attack recognition using software agents

an assumption that a phisher may take at most 60
seconds, to reload the inactive page with a new look.

During this time, the relevant features from the
webpages opened in various tabs are captured and
recorded (feature extraction phase). The feature
extractions conducted further in every 60 seconds use
this recorded value for comparison phase. The out-
put of feature comparison is a resemblance score of
the original webpage with its currently opened ver-
sion. In the case of text, images and title, percentage
of similarity is considered. The similarity in web-
page address and favicon are indicated using Boolean
values. The resemblance score of webpages in the
dataset are calculated for the eight tabnabbing pages.
This process is continued with all the webpages in
the dataset.

In order to separate legitimate and phishing pages,
the resemblance score set is partitioned according to
a threshold value t. In this framework, the value of
t is set to 4 to get an accurate result. If resemblance
score is greater than 4, the webpage is considered as
genuine, otherwise as phishing and an alert message
is displayed to the user.

The effectiveness of the method is assessed using
false positive rate and true positive rate. FPR and TPR
for various threshold values are computed using the
below given formula and is shown in Fig. 3.

FPR = FP

(FP + TN)
. (6)

TPR = TP

(FN + TP)
. (7)

In the framework, phishers cannot influence the
false positives as legitimacy of a site is directly pro-
portional to the resemblance score, but there may
be false negatives if a desirable value of threshold
is not chosen. As it does not raise any false alarms,
FP in the method is close to 0. Concerning security

Fig. 3. False positive rate and True positive rate in various
thresholds.

Table 3
Evaluation results

Threshold Accuracy Precision Recall F1 measure

0 90 98.7 91.1 94.7
0.5 90 98.8 91.0 94.7
1 90 98.9 90.9 94.7
1.5 91 99.6 91.3 95.2
2 92.8 99.6 93.0 96.2
2.5 93.5 99.6 93.7 96.5
3 95 99.6 95.1 97.3
3.5 96.8 99.8 96.8 98.3
4 97.3 99.9 97.2 98.5
4.5 96 99.8 95.9 97.8
5 96 99.7 96.1 97.8

as the major preference, the threshold value t should
be tuned to minimize the false negatives. So a better
choice of t is required for avoiding false predictions.
It is noteworthy that there exists a particular thresh-
old value for which the framework exhibits perfect
behavior. Since the performance of the system is pri-
marily determined by the choice of t, an effort was
made to find the best t by varying it from 0 to 5 and
found that the method performs best when t = 4.

In addition, we have also evaluated accuracy, pre-
cision, recall and F1 (harmonic mean of precision
and sensitivity to measure the performance of the
proposed method. Table 3 summarizes the evaluation
results using the following measurements in various
thresholds.

Accuracy = (TP + TN)

TP + TN + FP + FN
. (8)

Precision = TP

TP + FP
. (9)

Recall = TP

TP + FN
. (10)

F1 = 2TP

2TP + FP + FN
. (11)

Figure 4 shows the percentage of false detections
from various tabnabbing pages. From our analy-
sis, it has been noted that impersonated versions
of email services (Hotmail and Gmail) hasn’t con-
tributed to false detections. The percentage of false
detections was mainly from fake versions of bank-
ing sites (Bradesco and Citibank).This shows that
our method could detect all the cases of tabnabbing
launched using email services.

6.1.2. URL and hyperlink analysis
In this experiment, we evaluate the robustness of

our agent based method against URL obfuscations
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Fig. 4. False detections from tabnabbing pages.

and malicious links. The experiment is conducted in
1000 legitimate pages and 1000 phishing pages. The
legitimate pages are some common webpages and
phishing sites are taken from PhishTank. PhishTank
is the largest collaborative clearing house for data
and information about phishing scams on the Inter-
net [30]. After submitting to PhishTank, a potential
phishing URL is verified by a number of registered
users to confirm it as phishing. We collected 500
confirmed phishing URLs from July 1 to Septem-
ber 30 of 2015 (Phishing dataset 1) and another 500
phishing URLs from October 1 to December 31 of
2015 (Phishing dataset 2). A program in java is writ-
ten to determine the legitimacy of the URL. The
occurrence pattern of each URL feature in phish-
ing datasets are monitored and are plotted. Figure 5
shows the percentage of existence of lexical features
in two phishing datasets. We have selected ten suspi-
cious tokens frequently appearing in phishing URLs.
Figure 6 shows the number of occurrences of sus-
picious tokens in the selected phishing URL set. It
is noticed that some of these tokens have correlation

Fig. 5. Percentage of occurrence of lexical features.

Fig. 6. Number of occurrences of suspicious tokens.

with each other and they appear together in a phishing
URL.

These patterns are noted and are given in Table 4.
There are ten popular targets identified from Phish-
Tank which are frequently used by phishers to launch
attacks. Figure 7 shows the percentage of phishing
URLs selected from these targets for the two phish-
ing dataset. Figure 8 shows the average miss rate
with respect to the number of legitimate and phish-
ing pages. The results show that the percentage of
miss rate is reasonably low. It has been seen that the
suitable selection of phishing features from malicious
URLs have significant impact on the method’s perfor-
mance. The URL detection method has succeeded in
appropriate detection of features from phishing and
legitimate sites and thus contributed to lower miss
rate. The approach achieved an even better result
using fewer features.

After the URL structural analysis, the extracted
hyperlinks from the webpages also undergo the same
URL analysis procedure if they are not blacklisted.
During the process of hyperlink analysis, we have
gone through webpages with no hyperlinks, single
hyperlinks and multiple hyperlinks.

Table 5 shows that the accuracy of the method
increases when incorporating URL and hyperlink
analysis.

6.2. Comparative analysis

In this section, a performance comparison of the
proposed method against the existing methods is plot-
ted. The proposed method is an agent based method
which brings the power of agents in identifying
phishing attacks. The first comparison is done with
two existing anti-tabnabbing methods to prove the
efficiency of our approach in detecting tabnabbing.



A
U

TH
O

R
 C

O
P

Y

3282 S. Sarika and V. Paul / Parallel phishing attack recognition using software agents

Table 4
Number of co-occurrences in suspicious keywords

Tokens login signin update verify secure banking webscr dispatch cgi account

login –
√ √ √ √ √ √ √

signin
√

–
√ √ √ √

update
√ √

–
√ √ √ √ √ √

verify –
√

secure
√ √ √

–
√ √ √ √

banking
√ √ √ √

–
√

webscr
√ √ √

–
√ √

dispatch
√ √

–
cgi

√ √ √ √
–

√
account

√ √ √ √ √ √ √
–

Fig. 7. Percentage of phishing URLs from popular targets.

Fig. 8. Average miss rate with respect to the number of webpages.

The metric used is accuracy (of attack recognition).
Figure 9 shows the comparison analysis of the pro-
posed and existing two anti-tabnabbing methods
TabShots [12] claiming an accuracy of 78% and Tab-
sGuard [15] offers an accuracy of 96.5%. A quick
glance at the results show that the proposed anti-
phishing solution is able to detect phishing attacks
with an accuracy of 97.3% and outperforms the exist-
ing methods by producing better results.

Table 5
Performance analysis of the method

Method Accuracy

Agent Based Method + Blacklisting 91%
Agent Based Method + Blacklisting 94.5%

+ URL Analysis
Agent Based Method + Blacklisting 97.3%

+ URL Analysis + Hyperlink Analysis

Fig. 9. Comparative analysis with anti-tabnabbing methods.

Fig. 10. Comparative analysis with anti-phishing methods.

The second comparison is done to show the overall
efficiency of our method in phishing attack detec-
tion. Figure 10 shows the comparison analysis of
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the proposed method and five existing antiphishing
methods [1, 24, 28, 36, 43] in terms of precision.

7. Discussion

Eventhough agents are used in a variety of plat-
forms, ours is the first attempt to utilize them in
antiphishing process. By considering agent as a ser-
vice [7], a lot of human effort in phishing monitoring
and detection can be saved. The system consists of
agents that cooperatively self-organize [26] to moni-
tor and track fraudulent websites. The approach uses
textual features of a webpage to recognize an attack
and is able to capture visually similar or dissimilar
phishing targets.

In contrast to the existing schemes [12, 23, 31,
34], our scheme is designed to neutralize three dif-
ferent types of phishing. Remarkably, our method
has the virtue that the adversary has very little
chance to evade detection, in comparison to other
anti-tabnabbing schemes [12, 15, 31, 34]. In the
framework, there is no chance of any false posi-
tives as we consider resemblance score as the basis
for site’s legitimacy. False negatives occur when a
phisher tries to launch tabnabbing with a look-a-like
webpage with very few changes in page layout. This
could be alleviated by fine-tuning the threshold value.
In this framework, user security was given utmost
importance as attacks exploiting human have been
on the rise.

This method alerts the user about the attack and
gives explicit warning messages about the symptoms
of attack which are simple to understand. The pro-
posed framework is a simple and effective method
which concentrates on data security and accuracy of
attack recognition.

8. Conclusions and future work

This paper presents the design and evaluation of
an agent based antiphishing method for identifying
phishing websites. The approach is aimed to detect
new types of phishing scams leading to identity theft
and financial losses. This distributed agent based
framework using JADE platform can monitor and
detect phishing sites which masquerade as benevo-
lent ones simultaneously in many tabs. In practice,
the approach performs very well in perceiving tab-
nabbing attack, phishing URLs and malicious links
in webpage. In future, the proposed method can be

refined to work suitable for evading other phishing
attacks and is thus robust over time.
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