D 120020

(Pages : 4)

Name.....

Reg. No.....

SIXTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION MARCH 2025

B.B.A.

BBA6B13—MANAGEMENT SCIENCE

(Admissions Year-2019 Onwards)

Time : Two Hours and a Half

Maximum : 80 Marks

Part A

Answer all questions.

- 1. What are analogue models ?
- 2. Explain transportation problem.
- 3. Explain Hurwitz alpha criterion.
- 4. What are the nodes in decision tree?
- 5. Explain value of the game.
- 6. What is linear programming problems?
- 7. What is optimal solution ?
- 8. What do you mean by mixed strategy ?
- 9. Explain pay-off.
- 10. What is node in network diagram?
- 11. What is decision tree?
- 12. What is iconic model?
- 13. Explain balanced transportation problem.

Turn over

593503

D 120020

- 14. Name any two-optimality test in transportation problem.
- 15. What is slack?

 $(15 \times 2 = 30 \text{ Maximum ceiling } 25 \text{ marks})$

Part B

Answer **all** questions.

- 16. Discuss the limitations of PERT and CPM.
- 17. Discuss the assumptions of game theory.
- 18. Explain the terms : (a) Expected Monetary value ; and (b) Expected opportunity loss criteria.
- 19. Discuss the basic assumptions of Linear Programming Problem.
- 20. Draw a network diagram from the following activities and find the critical path.

Activity	:	1 - 2	1 - 3	1 - 4	2 - 5	3 - 5	4 - 6	5 – 6
Duration	:	2	4	3	1	6	5	7

21. A company manufactures two products A and B. Each unit of B takes twice as long to produce as one unit of A and if the company were to produce only A it would have time to produce 2000 units per day.

The availability of the raw material is enough to produce 1500 units per day of both A and B together. Product B requiring a special ingredient, only 600 units of it can be made per day. If A fetches a profit of 2 per unit and B a profit of 4 per unit, Develop mathematical model of LPP

22. The co-efficient of optimism is 0.4 so the co-efficient of pessimism is 0.6 Select course of action that optimizes profit or minimizes cost using Hurwitz criterion.

Course of action	Best pay off	Worst pay off
\mathbf{S}_1	- 3000	- 3000
S_2	- 1000	- 4000

Suppose a robot building firm plans the following project. Draw the n/w and find the Critical path

D 120020

Job	Predecessor	Job	Predecessor	Job	Predecessor
Α	-	F	А	L	G, H
В	-	G	F	Μ	J, K, L
С	А	н	D, E	N	J, K, L
D	А	J	G, H	0	K, J
Е	В, С	K	G, H		

23. Draw an economical AOA n/w using the following data :

 $(8 \times 5 = 40,$ Maximum ceiling 35 marks)

Part C

3

Answer any **two** questions.

24. Solve graphically the following linear programming problem.

```
Minimize, Z = 20x1+10x2
Subject to :
x_1 + 2x_2 \le 40
3x1 + x2 \ge 30
4x1 + 3x2 \ge 60
x1, x2 \ge 0.
```

25. A Mobile phone dealer finds that the cost of a mobile in stock for a week is Rs. 30 and the cost of a unit shortage is Rs. 70. For one particular model of television the probability distribution of weekly sales is as follows.

Weekly Sales	:	0	1	2	3	4	5	6
Probability	:	0.10	0.10	0.20	0.25	0.15	0.15	0.05

How many units per week should the dealer order ? Also, find EVPI ?

Turn over

593503

593503

D 120020

26. Determine an initial basic feasible solution to the following transportation problem by using :(a) The least cost method ; and (b) Vogel's approximation method.

4

Destination							
	D_1	D_2	D_3	D_4	Supply		
S1	1	2	1	4	30		
S2	3	3	2	1	30		
S3	4	2	5	9	40		
Demand	20	40	30	10			

27. Explain the phases of OR.

 $(2 \times 10 = 20 \text{ marks})$