n	72	0	4	0
IJ	14	7	4	o

(Pages: 2)

Nam	e
Nam	B

Reg. No.....

FIRST SEMESTER M.A./M.Sc./M.Com. DEGREE EXAMINATION DECEMBER 2019

(CBCSS)

Computer Science

CSS 1C 03-THEORY OF COMPUTATION

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer any four questions. Each question carries 2 weightage.

- 1. Define Non-deterministic Finite Automata.
- 2. Draw DFA which accepts strings of the form (ab)*abb.
- 3. Explain NP completeness and Cook's theorem.
- 4. Explain Non-deterministic Turing machine.
- 5. Write a regular expression for the language $L = \{ab^n w, n >= 3, w(a+b)^+\}$.
- 6. Explain homomorphism.
- 7. Define LBA.

 $(4 \times 2 = 8 \text{ weightage})$

Section B

Answer any four questions. Each question carries 3 weightage.

- 8. Design an NFA which recognizes the language over $\{0, 1\}$ with $\{w \in \Sigma^* | w \text{ contains at least two 0s, or exactly two 1s}\}$.
- 9. Discuss halting problem.
- 10. Write a note on Chomsky hierarchy.
- 11. Explain the properties of regular languages.
- 12. Explain the conversion of NFA to regular expression with an example.
- 13. Explain CNF and GNF with examples.
- 14. Construct a PDA for the Language $L = \{a^m bc^{2m} | m > 0\}$.

 $(4 \times 3 = 12 \text{ weightage})$

Turn over

Section C

Answer any two questions.

Each question carries 5 weightage.

- 15. With a suitable example, illustrate NFA to DFA conversion.
- 16. Discuss Turing acceptable, Turing decidable and Turing enumerable language classes.
- 17. State and prove the Pumping Lemma about the existence of Non-regular languages.
- 18. Discuss the properties of Context Free Languages and Deterministic Context Free Languages.

 $(2 \times 5 = 10 \text{ weightage})$