C	8	2	4	0	9

(Pages: 4)

Nome	· .	
Hame		 *******
-, -,		

Reg. No.....

SECOND SEMESTER B.A./B.Sc. DEGREE EXAMINATION, APRIL 2020

(CBCSS—UG)

B.C.A.

BCA 2C 04—OPERATIONS RESEARCH

(2019 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A (Short Answer Type Questions)

Answer all the questions.

Each question carries maximum of 2 marks.

Ceiling 20 marks.

- Write any two applications of OR?
- 2. What do you mean by an objective function of an LPP?
- 3. What are the basic assumptions of a LPP?
- 4. What do you mean by an artificial variable?
- 5. What do you mean by basic feasible solution of a Transportation problem?
- 6. What are Assignment problems?
- 7. Define Travelling salesman problem.
- 8. What do you mean by Degeneracy in a TP?
- 9. What is network analysis?
- 10. What is meant by a Critical path? Why should we know which activities are critical?
- 11. What is dummy activity?
- 12. Distinguish between 'Slack' and 'float'.

(Ceiling: 20 marks)

Turn over

Section B (Short Essay Type Questions)

Answer all the questions. Each question carries 5 marks. Ceiling 30 marks.

- 13. What are the limitations of OR?
- 14. Solve Graphically:

$$Maximize = 3x_1 + 5x_2$$

subjected to :
$$x_1 + 2x_2 \le 2,000$$

$$x_1 + x_2 \le 1,500$$

$$x_2 \leq 600$$

$$x_1, x_2 \geq 0.$$

- 15. A manufacturer of furniture makes two products, chairs and tables. Processing of these products is done on two machines A and B. A chair requires 2 hours on machine A and 6 hours on machine B. A table requires 5 hours on machine and no time on machine B. There are 16 hours of time per day available on machine A and 30 hours on machine B. Profit gained by the manufacturer from a chair is Re. 1 and from a table is Rs. 5 respectively. Formulate the problem into a LPP in order to maximise the total profit?
- 16. Find the initial solution of the following TP by using Lowest cost entry method:

	D ₁	D_2	D_3	Supply
0,	2	7	4	5
. O ₂	3	3	1	8
O_3	5	4	7	7
O_4	1	6	2	14
Demand	7	9	18	

17. Find the optimal solution to the following Assignment problem showing the cost for assigning workers to jobs:

$$Workers \begin{bmatrix} x & y & z \\ 18 & 17 & 16 \\ 15 & 13 & 14 \\ 19 & 20. & 21 \end{bmatrix}$$

18. Draw a network diagram to the following set of activities:

Activities	Proceeding activities
A	
В	
С	A
D	A
E	B and C
F	B and C
G	B and C
H	D and E
I	\mathbf{F}
J	F
K	G
L	H and I
M	H and I
N	J, K and L

19. Distinguish between PERT and CPM.

(Ceiling: 30 marks)

Section C (Essay Type Questions)

Answer any one question.
Each question carries 10 marks.

20. Solve the following LPP by using Two-phase simplex method:

Maximize Z =
$$5x_1+8x_2$$
 subjected to $3x_1+2x_2\geq 3$
$$x_1+4x_2\geq 4$$

$$x_1+x_2\leq 5: x_1,x_2\geq 0.$$

Turn over

21. Solve the following minimal assignment problems:

	I	II	Ш	IV	v
A	1	3	2	3	6
В	2	4	3	1	5
C	5	6	3	4	6
D.	3	1	4	2	2
E	.1	5	6	5	4

 $(1 \times 10 = 10 \text{ marks})$

