(**Pages : 4**)

Name.....

Reg. No.....

SECOND SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2023

B.C.A.

BCA 2C 04—OPERATIONS RESEARCH

(2019-2022 Admissions)

Time : Two Hours

Maximum : 60 Marks

Section A (Short Answer Type Questions)

Answer **all** questions. Each question carries 2 marks. Ceiling 20 marks.

- 1. Define Operations Research?
- 2. Write any *two* applications of OR.
- 3. What is Surplus variable?
- 4. What are the basic assumptions of LPP?
- 5. What do you mean by Transhipment Problem ?
- 6. What do you mean by basic feasible solution of a Transportation problem ?
- 7. Define Travelling salesman problem.
- 8. Write down mathematical formulation of assignment problem.
- 9. Define total float, free float and independent float.
- 10. What is sequencing problem ?
- 11. Define no passing rule on sequencing problem.
- 12. Define Degeneracy in Transportation problem.

Turn over

394796

$\mathbf{2}$

Section B (Short Essay Type Questions)

Answer **all** questions. Each question carries 5 marks. Ceiling 30 marks.

- 13. Explain the role of operation research in decision-making.
- 14. Solve the following LPP by Graphically :

 $\begin{array}{l} Maximize \; Z=X_1+3X_2\\ subject \; to \; constraints\\ X_1+2X_2\leq 9\\ X_1-X_2\geq 2\\ X_1+4X_2\leq 11\\ X_1,X_2\geq 0. \end{array}$

15. Solve LPP using simplex method :

 $\begin{array}{l} Maximize \; Z=2X_1+3X_2\\ subject \; to \; constraints\\ X_1+2X_2\leq 6\\ 2X_1+X_2\leq 8\\ X_1,X_2\geq 0. \end{array}$

16. Obtain Initial basic feasible solution of the following Transportation problem using North West Corner rule :

	D_1	D_2	D_3	\mathbf{D}_4	Supply
S_1	1	2	1	4	30
S_2	3	3	2	1	50
S_3	4	2	5	9	20
Demand	20	40	30	10	

394796

	D ₁	D_2	D_3	Supply
01	2	7	4	5
02	3	3	1	8
O ₃	5	4	7	7
0 ₄	1	6	2	14
Demand	7	9	18	

17. Find the initial solution of the following Transportation Problem by using Least Cost Method :

18. Solve the following assignment problem :

			-		
	1	2	3	4	5
А	8	4	2	6	1
В	0	9	5	5	4
С	3	8	9	2	6
D	4	3	1	0	3
Е	9	5	8	9	5

19. Compare PERT and CPM.

Section C (Essay Type Questions)

Answer any **one** question. The question carries 10 marks.

20. Solve LPP using simplex method :

```
\begin{array}{l} Maximize \; Z=2X_1+3X_2\\ subject \; to \; constraints\\ X_1+X_2\leq 4\\ -X_1+X_2\leq 1\\ X_1+2X_2\leq 5 \end{array}
```

 $X_1, X_2 \ge 0.$

Turn over

394796

01	Solve the following transportation problem	and determine	antimal allocation .
<i>4</i> 1.	Solve the following transportation problem	and determine	opullial allocation :
	of the second seco		- T

	D_1	D_2	D ₃	D_4	Supply
S ₁	21	16	25	13	11
S_2	17	18	14	23	13
S_3	32	27	18	41	19
Demand	6	10	12	15	

 $^{(1 \}times 10 = 10 \text{ marks})$